login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204269
Symmetric matrix: f(i,j)=floor[(i+j+2)/4]-floor[(i+j)/4], by (constant) antidiagonals.
8
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1
COMMENTS
A block matrix over {0,1}. In the following guide to related matrices and permanents, Duvwxyz represents the matrix remaining after row 1 of the matrix Auvwxyz is deleted:
Matrix................Permanent of n-th submatrix
A204269=D204549.......A204422
A204545=D204269.......A204546
A204547=D204545.......A204548
A204549=D204547.......A204550
EXAMPLE
Northwest corner:
1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
MATHEMATICA
f[i_, j_] := Floor[(i + j + 2)/4] - Floor[(i + j)/4];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 14}, {i, 1, n}]] (* A204269 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 22}] (* A204422 *)
CROSSREFS
Sequence in context: A014087 A014042 A014075 * A371690 A179830 A266216
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 16 2012
STATUS
approved