login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204164
Symmetric matrix based on f(i,j) = floor((i+j)/2), by antidiagonals.
11
1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
OFFSET
1,4
COMMENTS
A204164 represents the matrix M given by f(i,j) = floor((i+j)/2) for i >= 1 and j >= 1. See A204165 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.
k appears 4k-1 times, k > 0. - Boris Putievskiy, Jun 12 2024
Number of numbers of the form 2k^2+k+1 <= n, for k = 0,1,2,... - Wesley Ivan Hurt, Jun 19 2024
LINKS
Boris Putievskiy, Integer Sequences: Irregular Arrays and Intra-Block Permutations, arXiv:2310.18466 [math.CO], 2023.
FORMULA
a(n) = ceiling((sqrt(8*n+1)-1)/4). - Boris Putievskiy, Jun 12 2024
a(n) = Sum_{k=1..n} [c(k) = c(k-1)+1], where c(n) = floor(sqrt(2n)+1/2) mod 2 = A057211(n) and [] is the Iverson bracket. - Wesley Ivan Hurt, Jun 23 2024
a(n) = m+1 if n>m(2m+1) and a(n) = m otherwise where m = floor(sqrt(n/2)). - Chai Wah Wu, Nov 14 2024
EXAMPLE
Northwest corner:
1 1 2 2 3 3 4 4
1 2 2 3 3 4 4 5
2 2 3 3 4 4 5 5
2 3 3 4 4 5 5 6
3 3 4 4 5 5 6 6
MATHEMATICA
f[i_, j_] := Floor[(i + j)/2];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8 X 8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]] (* this sequence *)
(* or *)
p[n_] := CharacteristicPolynomial[m[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%] (* A204165 *)
TableForm[Table[c[n], {n, 1, 10}]]
(* or *)
a[n_] = Ceiling[(Sqrt[8*n + 1] - 1)/4];
Nmax = 21; Table[a[n], {n, 1, Nmax}] (* Boris Putievskiy, Jun 12 2024 *)
PROG
(Python)
from math import isqrt
def A204164(n): return (m:=isqrt(n>>1))+(n>m*((m<<1)+1)) # Chai Wah Wu, Nov 14 2024
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Clark Kimberling, Jan 12 2012
STATUS
approved