login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204120
Symmetric matrix based on f(i,j) = gcd(prime(i+1),prime(j+1)), by antidiagonals.
3
3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
A204120 represents the matrix M given by f(i,j)=GCD(prime(i+1),prime(j+1)) for i>=1 and j>=1. See A204121 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.
Square array with odd primes (A065091) on main diagonal, and 1 at all other entries; array A204118 without its top row and the leftmost column. - Antti Karttunen, Sep 25 2018
EXAMPLE
Northwest corner:
3 1 1 1
1 5 1 1
1 1 7 1
1 1 1 11
MATHEMATICA
f[i_, j_] := GCD[Prime[i + 1], Prime[j + 1]];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 15}, {i, 1, n}]] (* A204120 *)
p[n_] := CharacteristicPolynomial[m[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%] (* A204121 *)
TableForm[Table[c[n], {n, 1, 10}]]
PROG
(PARI)
up_to = 65703; \\ = binomial(362+1, 2)
A204120sq(row, col) = gcd(prime(1+row), prime(1+col));
A204120list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, if(i++ > up_to, return(v)); v[i] = A204120sq((a-(col-1)), col))); (v); };
v204120 = A204120list(up_to);
A204120(n) = v204120[n]; \\ Antti Karttunen, Sep 25 2018
CROSSREFS
Cf. A065091 (main diagonal), A204118, A204121, A204016, A202453.
Sequence in context: A123940 A350447 A339969 * A342666 A268032 A339899
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 11 2012
STATUS
approved