login
A204067
Decimal expansion of the Fresnel Integral, Integral_{x >= 0} cos(x^3) dx.
4
7, 7, 3, 3, 4, 2, 9, 4, 2, 0, 7, 7, 9, 8, 9, 8, 5, 0, 1, 9, 6, 1, 0, 1, 6, 1, 1, 2, 9, 5, 2, 1, 7, 3, 4, 0, 9, 2, 4, 8, 0, 6, 8, 4, 7, 2, 2, 4, 2, 1, 5, 6, 7, 2, 6, 6, 2, 0, 3, 1, 9, 5, 5, 4, 7, 2, 9, 7, 6, 5, 7, 1, 1, 6, 1, 1, 6, 0, 6, 4, 6, 6, 5, 0, 3, 8, 6, 4, 9, 5, 7, 5, 9, 9, 9, 6, 0
OFFSET
0,1
LINKS
R. J. Mathar, Series expansion of generalized Fresnel integrals, arXiv:1211.3963 [math.CA], 2012, eq. (3.8).
Wikipedia, Fresnel Integral.
FORMULA
Equals Pi/(3*Gamma(2/3)) = A019670 / A073006.
Equals Gamma(1/3)/(2*sqrt(3)) = A073005 / A010469. - Amiram Eldar, May 26 2023
EXAMPLE
0.7733429420779898501961016...
MAPLE
evalf(int(cos(x^3), x=0..infinity), 120); # Muniru A Asiru, Sep 26 2018
MATHEMATICA
RealDigits[Gamma[1/3]/(2*Sqrt[3]), 10, 120][[1]] (* Amiram Eldar, May 26 2023 *)
PROG
(PARI) Pi/(3*gamma(2/3)) \\ Gheorghe Coserea, Sep 26 2018
(PARI) intnum(x=[0, -2/3], [oo, I], cos(x)/x^(2/3))/3 \\ Gheorghe Coserea, Sep 26 2018
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
R. J. Mathar, Jan 10 2013
STATUS
approved