OFFSET
1,8
COMMENTS
Conjecture: For any n > 0 not among 1, 21, 326, 341, 626, we have a(n) < sqrt(n)*log(n). If n > 626 is not equal to 971, then n+k and n+k^2 are both prime for some 0< k < sqrt(n)*log(n). Also, n+k^2 is prime for some 0< k <= sqrt(n) if n > 43181.
Obviously, a(n)=0 iff n is a prime. - M. F. Hasler, Jan 11 2013
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588.
EXAMPLE
a(8)=3 since 8+3 and 8+3^2 are both prime, but none of 8, 8+1, 8+2 is prime.
MATHEMATICA
Do[Do[If[PrimeQ[n+k]==True&&PrimeQ[n+k^2]==True, Print[n, " ", k]; Goto[aa]], {k, 0, n}];
Label[aa]; Continue, {n, 1, 100}]
PROG
(PARI) a(n)=my(k=0); while(!isprime(n+k) || !isprime(n+k^2), k++); k \\ - M. F. Hasler, Jan 11 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 09 2013
STATUS
approved