login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203148
(n-1)-st elementary symmetric function of {3,9,...,3^n}.
4
1, 12, 351, 29160, 7144929, 5223002148, 11433166050879, 75035879252272080, 1477081305957768349761, 87223128348206814118735932, 15451489966710801620870785316511, 8211586182553137756809552940033725880, 13091937140529934508508023103481190655434529
OFFSET
1,2
COMMENTS
From R. J. Mathar, Oct 01 2016: (Start)
The k-th elementary symmetric functions of the integers 3^j, j=1..n, form a triangle T(n,k), 0<=k<=n, n>=0:
1;
1 3;
1 12 27;
1 39 351 729;
1 120 3510 29160 59049;
1 363 32670 882090 7144929 14348907;
which is the row-reversed version of A173007. This here is the first subdiagonal. The diagonal seems to be A047656. The first column is A029858. (End)
LINKS
FORMULA
a(n) = (1/2)*(3^n-1)*3^(binomial(n,2)). - Emanuele Munarini, Sep 14 2017
MATHEMATICA
f[k_]:= 3^k; t[n_]:= Table[f[k], {k, 1, n}];
a[n_]:= SymmetricPolynomial[n - 1, t[n]];
Table[a[n], {n, 1, 16}] (* A203148 *)
Table[1/2 (3^n - 1) 3^Binomial[n, 2], {n, 1, 20}] (* Emanuele Munarini, Sep 14 2017 *)
PROG
(Sage) [(1/2)*(3^n -1)*3^(binomial(n, 2)) for n in (1..20)] # G. C. Greubel, Feb 24 2021
(Magma) [(1/2)*(3^n -1)*3^(Binomial(n, 2)): n in [1..20]]; // G. C. Greubel, Feb 24 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Dec 29 2011
STATUS
approved