login
A202451
Upper triangular Fibonacci matrix, by SW antidiagonals.
6
1, 0, 1, 0, 1, 2, 0, 0, 1, 3, 0, 0, 1, 2, 5, 0, 0, 0, 1, 3, 8, 0, 0, 0, 1, 2, 5, 13, 0, 0, 0, 0, 1, 3, 8, 21, 0, 0, 0, 0, 1, 2, 5, 13, 34, 0, 0, 0, 0, 0, 1, 3, 8, 21, 55, 0, 0, 0, 0, 0, 1, 2, 5, 13, 34, 89, 0, 0, 0, 0, 0, 0, 1, 3, 8, 21, 55, 144
OFFSET
1,6
LINKS
Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
FORMULA
Row n consists of n-1 zeros followed by the Fibonacci sequence (1, 1, 2, 3, 5, 8, ...).
EXAMPLE
Northwest corner:
1...1...2...3...5...8...13...21...34
0...1...1...2...3...5....8...13...21
0...0...1...1...2...3....5....8...13
0...0...0...1...1...2....3....5....8
MATHEMATICA
n = 12;
Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]];
P = Transpose[Q]; F = P.Q;
Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202451 as a sequence *)
Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202452 as a sequence *)
Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202453 as a sequence *)
TableForm[Q] (* A202451, upper triangular Fibonacci matrix *)
TableForm[P] (* A202452, lower triangular Fibonacci matrix *)
TableForm[F] (* A202453, Fibonacci self-fusion matrix *)
TableForm[FactorInteger[F]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 19 2011
STATUS
approved