login
A200616
Decimal expansion of the lesser of two values of x satisfying 4*x^2 - 1 = tan(x) and 0 < x < Pi/2.
3
6, 6, 9, 1, 0, 2, 9, 7, 2, 0, 2, 3, 5, 7, 5, 4, 1, 6, 0, 7, 6, 6, 0, 1, 2, 5, 0, 1, 8, 8, 4, 5, 6, 9, 8, 2, 4, 5, 6, 2, 2, 7, 9, 4, 4, 3, 8, 7, 1, 8, 5, 6, 4, 3, 3, 0, 1, 1, 5, 8, 3, 0, 0, 2, 1, 7, 3, 9, 4, 9, 8, 4, 0, 8, 4, 2, 6, 3, 7, 2, 4, 5, 6, 0, 2, 7, 9, 3, 9, 0, 4, 3, 4, 2, 2, 9, 3, 7, 4
OFFSET
0,1
COMMENTS
See A200614 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
lesser: 0.839582259045302941513764008863804986308...
greater: 1.350956593976519397744696294368524715373...
MATHEMATICA
a = 4; c = 1;
f[x_] := a*x^2 - c; g[x_] := Tan[x]
Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]
RealDigits[r] (* A200616 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
RealDigits[r] (* A200617 *)
CROSSREFS
Cf. A200614.
Sequence in context: A351516 A083507 A157320 * A019851 A155880 A217852
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 20 2011
STATUS
approved