login
A200228
Decimal expansion of greatest x satisfying 3*x^2 - cos(x) = 4*sin(x).
3
1, 1, 6, 4, 7, 2, 0, 1, 3, 2, 6, 0, 0, 0, 8, 6, 5, 4, 8, 1, 4, 4, 1, 7, 3, 6, 0, 3, 9, 1, 7, 6, 2, 9, 3, 4, 2, 8, 3, 8, 8, 5, 9, 8, 2, 9, 2, 3, 6, 1, 6, 8, 4, 5, 0, 1, 3, 9, 9, 2, 3, 7, 8, 1, 6, 7, 5, 4, 2, 8, 8, 0, 2, 7, 2, 0, 0, 6, 5, 0, 9, 7, 8, 3, 9, 7, 1, 5, 4, 7, 9, 2, 5, 5, 4, 8, 9, 5, 0
OFFSET
1,3
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.21220726159791829897823740501037540...
greatest x: 1.164720132600086548144173603917629...
MATHEMATICA
a = 3; b = -1; c = 4;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /.FindRoot[f[x] == g[x], {x, -.22, -.21}, WorkingPrecision -> 110]
RealDigits[r] (* A200227 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]
RealDigits[r] (* A200228 *)
PROG
(PARI) a=3; b=-1; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 30 2018
CROSSREFS
Cf. A199949.
Sequence in context: A141796 A105160 A353773 * A309710 A241297 A021611
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 14 2011
STATUS
approved