login
A199270
Decimal expansion of x > 0 satisfying 2*x^2 + 2*x*cos(x) = 1.
3
3, 8, 1, 7, 4, 8, 4, 2, 0, 9, 9, 2, 9, 8, 5, 9, 5, 7, 9, 1, 8, 5, 2, 1, 6, 1, 1, 8, 2, 3, 4, 8, 6, 6, 4, 5, 5, 9, 3, 3, 4, 1, 8, 5, 5, 0, 7, 6, 7, 1, 7, 8, 3, 1, 6, 0, 6, 3, 2, 9, 9, 1, 9, 0, 3, 7, 7, 0, 9, 1, 5, 4, 0, 8, 1, 6, 0, 9, 0, 2, 1, 1, 1, 5, 5, 3, 2, 0, 8, 5, 2, 6, 3, 3, 7, 3, 0, 1, 6
OFFSET
0,1
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.017240798342455566560350070545346176017411...
positive: 0.381748420992985957918521611823486645593341...
MATHEMATICA
a = 2; b = 2; c = 1;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.1, -1.0}, WorkingPrecision -> 110]
RealDigits[r] (* A199269 *)
r = x /. FindRoot[f[x] == g[x], {x, .38, .39}, WorkingPrecision -> 110]
RealDigits[r] (* A199270 *)
CROSSREFS
Sequence in context: A021266 A054399 A013676 * A131563 A016622 A143623
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 04 2011
EXTENSIONS
a(84) onwards corrected by Georg Fischer, Aug 03 2021
STATUS
approved