login
A199175
Decimal expansion of x>0 satisfying x^2+x*cos(x)=3.
3
1, 9, 0, 2, 5, 3, 0, 3, 8, 5, 0, 3, 8, 2, 3, 5, 7, 0, 3, 4, 5, 7, 7, 9, 5, 8, 2, 7, 7, 3, 9, 7, 2, 6, 7, 6, 1, 2, 7, 8, 9, 4, 2, 9, 0, 5, 3, 3, 4, 2, 2, 1, 0, 6, 0, 4, 5, 0, 4, 0, 1, 9, 1, 2, 0, 5, 8, 8, 0, 3, 8, 0, 5, 8, 5, 3, 8, 0, 4, 9, 5, 5, 8, 4, 2, 9, 9, 7, 5, 1, 4, 1, 6, 2, 8, 9, 5, 1, 0
OFFSET
1,2
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.67892976349109451959338320116343299...
positive: 1.90253038503823570345779582773972676...
MATHEMATICA
a = 1; b = 1; c = 3;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.7, -1.6}, WorkingPrecision -> 110]
RealDigits[r] (* A199174 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.90, 1.91}, WorkingPrecision -> 110]
RealDigits[r] (* A199175 *)
CROSSREFS
Cf. A199170.
Sequence in context: A198556 A261169 A093767 * A261313 A203129 A107091
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 04 2011
STATUS
approved