login
A198373
Decimal expansion of least x having 4*x^2-4x=cos(x).
3
3, 6, 9, 9, 4, 8, 1, 7, 0, 5, 8, 9, 8, 6, 6, 5, 2, 8, 6, 9, 1, 6, 0, 2, 0, 8, 8, 6, 2, 0, 2, 9, 5, 2, 2, 3, 4, 7, 7, 1, 8, 4, 0, 7, 6, 5, 5, 2, 3, 8, 5, 9, 0, 0, 3, 7, 1, 8, 4, 1, 4, 6, 5, 1, 5, 5, 7, 4, 0, 2, 7, 9, 2, 0, 1, 4, 5, 2, 4, 1, 6, 9, 0, 1, 6, 1, 6, 5, 5, 9, 1, 3, 0, 6, 1, 6, 0, 7, 8
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 0.369948170589866528691602088620295223...
greatest x: 0.7633945382101923369926745363848376145...
MATHEMATICA
a = 4; b = -4; c = -1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, .36, .37}, WorkingPrecision -> 110]
RealDigits[r1] (* A198373 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .76, .77}, WorkingPrecision -> 110]
RealDigits[r2] (* A198374 *)
CROSSREFS
Cf. A197737.
Sequence in context: A057083 A000748 A325738 * A331065 A160178 A011383
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 24 2011
STATUS
approved