login
A198229
Decimal expansion of greatest x having 3*x^2+2x=4*cos(x).
3
7, 2, 1, 3, 4, 1, 3, 0, 7, 6, 4, 8, 0, 1, 5, 5, 8, 2, 4, 2, 1, 0, 3, 1, 7, 2, 2, 8, 7, 2, 3, 0, 6, 4, 4, 8, 0, 7, 1, 3, 2, 7, 4, 5, 7, 8, 8, 7, 2, 6, 1, 7, 7, 3, 1, 8, 9, 8, 8, 0, 8, 7, 2, 0, 6, 2, 1, 0, 8, 1, 3, 0, 5, 2, 7, 1, 2, 8, 1, 1, 4, 2, 2, 4, 1, 6, 5, 1, 3, 1, 8, 1, 0, 5, 3, 3, 5, 2, 3
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.146069580210441813394351195780611...
greatest x: 0.721341307648015582421031722872306448...
MATHEMATICA
a = 3; b = 2; c = 4;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]
RealDigits[r1] (* A198228 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .72, .73}, WorkingPrecision -> 110]
RealDigits[r2] (* A198229 *)
CROSSREFS
Cf. A197737.
Sequence in context: A372907 A191856 A220862 * A133362 A317925 A010140
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 23 2011
STATUS
approved