login
A198161
Primes from merging of 10 successive digits in decimal expansion of sqrt(2).
34
4142135623, 8872420969, 9698078569, 7537694807, 7973799073, 7846210703, 2644121497, 9935831413, 6592750559, 7010955997, 1472851741, 5251407989, 2533965463, 5339654633, 6152583523, 1525835239, 3950547457, 5750287759, 5996172983, 4084988471, 6668713013
OFFSET
1,1
COMMENTS
Leading zeros are not permitted, so each term is 10 digits in length.
LINKS
MATHEMATICA
With[{len=10}, Select[FromDigits/@Partition[RealDigits[Sqrt[2], 10, 1000][[1]], len, 1], IntegerLength[#]==len&&PrimeQ[#]&]]
PROG
(PARI) A198161(n, x=sqrt(2), m=10, silent=0)={m=10^m; for(k=1, default(realprecision), (isprime(p=x\.1^k%m)&&p*10>m)||next; silent||print1(p", "); n--||return(p))} \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - M. F. Hasler, Nov 02 2014
CROSSREFS
For sqrt(2), see also A198162, A198163, A198164, A198165,A198166, A198167, A198168, A198169, A198161 (this sequence).
For the Golden Ratio, see A198177, A103773, A103789, A103793, A103808, A103809, A103810, A103811, A103812.
For the Euler-Mascheroni constant gamma, see A198776, A198777, A198778, A198779, A198780, A198781, A198782, A198783, A198784.
Sequence in context: A234051 A038831 A038820 * A244064 A255344 A186590
KEYWORD
nonn,base
AUTHOR
Harvey P. Dale, Oct 21 2011
STATUS
approved