login
A198100
Decimal expansion of least x having x^2-4x=-2*cos(x).
3
5, 0, 1, 3, 0, 4, 7, 5, 5, 4, 5, 4, 8, 0, 6, 4, 6, 3, 3, 9, 3, 6, 9, 0, 3, 5, 7, 5, 6, 8, 1, 9, 8, 1, 3, 0, 5, 5, 2, 3, 4, 5, 1, 0, 1, 0, 8, 2, 1, 5, 0, 5, 7, 8, 0, 8, 6, 0, 2, 6, 4, 3, 5, 1, 2, 3, 4, 9, 8, 6, 8, 7, 4, 5, 2, 9, 4, 4, 8, 4, 5, 0, 2, 3, 6, 7, 8, 7, 3, 8, 1, 8, 7, 6, 3, 6, 1, 3, 6
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 0.50130475545480646339369035756819...
greatest x: 4.222749528794927324484249676610...
MATHEMATICA
a = 1; b = -4; c = -2;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, 0, 5}]
r1 = x /. FindRoot[f[x] == g[x], {x, .5, .51}, WorkingPrecision -> 110]
RealDigits[r1] (* A198100 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 4.2, 4.3}, WorkingPrecision -> 110]
RealDigits[r2] (* A198101 *)
CROSSREFS
Cf. A197737.
Sequence in context: A058064 A316568 A198927 * A104112 A115635 A019729
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved