login
A197019
Decimal expansion of the radius of the circle tangent to the curve y=cos(4x) and to the positive x and y axes.
5
1, 7, 1, 9, 9, 4, 5, 1, 7, 3, 4, 8, 1, 0, 1, 6, 9, 0, 7, 3, 9, 0, 2, 4, 8, 6, 5, 4, 4, 8, 7, 1, 4, 9, 5, 4, 3, 9, 4, 8, 8, 2, 2, 2, 6, 6, 4, 9, 3, 9, 8, 1, 5, 8, 8, 7, 3, 3, 3, 6, 3, 7, 9, 7, 1, 0, 0, 0, 0, 9, 9, 8, 4, 8, 7, 9, 6, 2, 8, 7, 0, 9, 0, 3, 8, 6, 7, 0, 8, 8, 4, 8, 6, 8, 9, 7, 3, 6, 6
OFFSET
0,2
COMMENTS
Let (x,y) denote the point of tangency. Then
x=0.33861718723736417045737960551501765846156681578...
y=0.21464425212782002883052365316387247038020190838...
slope=-0.332183120530610097233795968342303024088179...
(The Mathematica program includes a graph.)
EXAMPLE
radius=0.171994517348101690739024865448714954394...
MATHEMATICA
r = .172; c = 4;
Show[Plot[Cos[c*x], {x, 0, Pi}],
ContourPlot[(x - r)^2 + (y - r)^2 == r^2, {x, -1, 1}, {y, -1, 1}], PlotRange -> All, AspectRatio -> Automatic]
f[x_] := (x - c*Sin[c*x] Cos[c*x])/(1 - c*Sin[c*x]);
t = x /. FindRoot[Cos[c*x] == f[x] + Sqrt[2*f[x]*x - x^2], {x, .5, 1}, WorkingPrecision -> 100]
x1 = Re[t] (* x coordinate of tangency point *)
y = Cos[c*x1] (* y coordinate of tangency point *)
radius = f[x1]
RealDigits[radius] (* A197019 *)
slope = -Sin[x1] (* slope at tangency point *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 08 2011
STATUS
approved