login
A196878
Decimal expansion of Pi/8*(6*zeta(3)+Pi^2*log(2)+4*log(2)^3).
4
6, 0, 4, 1, 8, 8, 2, 9, 0, 9, 7, 7, 5, 0, 9, 3, 5, 2, 2, 1, 5, 0, 4, 2, 4, 1, 3, 0, 6, 7, 5, 9, 9, 5, 9, 8, 5, 5, 0, 8, 7, 1, 0, 3, 0, 5, 7, 7, 4, 6, 4, 1, 9, 0, 7, 2, 5, 8, 6, 0, 1, 0, 1, 5, 2, 6, 0, 0, 4, 3, 0, 2, 5, 4, 6, 5, 5, 7, 5, 8, 1, 6, 0, 4, 0, 4, 7, 0, 8, 2, 6, 5, 8, 8, 2, 6, 1, 6, 9, 5, 1, 5, 5, 8, 1
OFFSET
1,1
COMMENTS
The absolute value of the integral {x=0..Pi/2} log(sin(x))^3 dx. The absolute value of m=3 of sqrt(Pi)/2*(d^m/da^m(gamma((a+1)/2)/gamma(a/2+1))) at a=0. - Seiichi Kirikami and Peter J. C. Moses, Oct 07 2011
REFERENCES
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 3.621.1
LINKS
K. S. Kolbig, On the integral int_0^Pi/2 log^n cos x log^p sin x dx, Math. Comp. 40 (162) (1983) 565-570, r_{3,0}
FORMULA
Equals A019675*(6*A002117 + A002388*A002162 + 4*A002162^3).
EXAMPLE
6.041882909775093522150424130675995...
MAPLE
Pi/8*(6*Zeta(3)+Pi^2*log(2)+4*log(2)^3) ; evalf(%) ; # R. J. Mathar, Oct 08 2011
MATHEMATICA
RealDigits[N[Pi/8 (6 Zeta[3] + Pi^2 Log[2] + 4 Log[2]^3), 150][[1]]
Sqrt[Pi]/2*Derivative[3][Gamma[(#+1)/2]/Gamma[#/2+1]&][0] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 25 2013 *)
PROG
(PARI) Pi/8*(6*zeta(3)+Pi^2*log(2)+4*log(2)^3) \\ G. C. Greubel, Feb 12 2017
CROSSREFS
Sequence in context: A202542 A019766 A094830 * A209835 A344973 A298528
KEYWORD
cons,nonn
AUTHOR
Seiichi Kirikami, Oct 07 2011
STATUS
approved