OFFSET
0,1
COMMENTS
Equals Integral_{x>=0} sin(4x)/(4x) dx. - Jean-François Alcover, Feb 28 2013
Consider 4 circles inscribed in a square. Inscribe a square in each circle. And finally, inscribe 4 circles inside each four small squares. Totally we get 16 small circles. Pi/8 is the ratio of the area of the 16 small circles to the area of initial square. See the link. - Kirill Ustyantsev, Apr 30 2020
LINKS
Ivan Panchenko, Table of n, a(n) for n = 0..1000
Kirill Ustyantsev, Geometric sense of Pi/8
FORMULA
From Peter Bala, Nov 15 2016: (Start)
Pi/8 = Sum_{k >= 1} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)).
More generally, for n >= 0 we have 1/(2*n)! * Pi/4 = Sum_{k >= 1} (-1)^(k+n-1) * 1/Product_{j = -n..n} (2*k + 2*j - 1): when n = 0 we get the Madhava-Gregory-Leibniz series for Pi/4.
For N divisible by 4, we have the asymptotic expansion Pi/8 - Sum_{k = 1..N/2} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)) ~ -1/2*(1/N^3 - 2/N^5 + 31/N^7 - 692/N^9 + ..., where the sequence of unsigned coefficients [1, 2, 31, 692, ...] equals A024235. (End)
Equals Integral_{x = 0..1} x*sqrt(1 - x^4) dx. - Peter Bala, Oct 27 2019
Equals Integral_{x = 0..inf} sin(x)^6/x^4 dx = Sum_{n >= 1} sin(n)^6/n^4, by the Abel-Plana formula. - Peter Bala, Nov 04 2019
From Amiram Eldar, Jul 12 2020: (Start)
Equals arctan(sqrt(2) - 1).
Equals Sum_{k>=0} (-1)^k/(4*k+2).
Equals Sum_{k>=0} 1/((4*k+1)*(4*k+3)) = Sum_{k>=0} 1/A001539(k).
Equals Integral_{x=0..oo} dx/(x^2 + 16).
Equals Integral_{x=0..oo} dx/(x^4 + 4) = Integral_{x=0..oo} x/(x^4 + 4) dx.
Equals Integral_{x=0..oo} x/(x^4 + 1)^2 dx = Integral_{x=0..1} x/(x^4 + 1) dx.
Equals Integral_{x=0..1} x * arcsin(x) dx. (End)
EXAMPLE
Pi/8 = 0.392699081698724154807830422909937860524646174921888227621868... - Vladimir Joseph Stephan Orlovsky, Dec 02 2009
MATHEMATICA
RealDigits[N[Pi/8, 6! ]] (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
PROG
(PARI)
default(realprecision, 1002);
eval(vecextract(Vec(Str(sumalt(n=0, (-1)^(n)/(4*n+2)))), "3..-2")) \\ Gheorghe Coserea, Oct 06 2015
(Magma) pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^100*(pi)/8))); // Vincenzo Librandi, Oct 07 2015
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved