login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196820
Decimal expansion of the least x>0 satisfying 1/(1+x^2)=5*cos(x).
6
1, 5, 0, 9, 7, 7, 1, 9, 0, 0, 4, 7, 0, 7, 2, 6, 8, 8, 5, 3, 5, 5, 4, 9, 3, 7, 5, 3, 5, 0, 0, 9, 8, 6, 5, 9, 9, 4, 4, 8, 6, 3, 7, 7, 2, 7, 5, 6, 3, 8, 3, 7, 3, 0, 5, 0, 6, 6, 8, 0, 5, 9, 3, 4, 3, 1, 5, 3, 7, 5, 3, 9, 5, 9, 0, 0, 9, 7, 0, 3, 7, 1, 1, 0, 9, 2, 9, 0, 8, 1, 2, 9, 7, 3, 8, 7, 9, 0, 2, 1
OFFSET
1,2
EXAMPLE
x=1.50977190047072688535549375350098659944863772756...
MATHEMATICA
Plot[{1/(1 + x^2), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, 2}]
t = x /. FindRoot[1 == (1 + x^2) Cos[x], {x, 1, 1.5}, WorkingPrecision -> 100]
RealDigits[t] (* A196816 *)
t = x /. FindRoot[1 == 2 (1 + x^2) Cos[x], {x, 1, 1.6},
WorkingPrecision -> 100]
RealDigits[t] (* A196817 *)
t = x /. FindRoot[1 == 3 (1 + x^2) Cos[x], {x, 1, 1.6},
WorkingPrecision -> 100]
RealDigits[t] (* A196818 *)
t = x /. FindRoot[1 == 4 (1 + x^2) Cos[x], {x, 1, 1.6},
WorkingPrecision -> 100]
RealDigits[t] (* A196819 *)
t = x /. FindRoot[1 == 5 (1 + x^2) Cos[x], {x, 1, 1.6},
WorkingPrecision -> 100]
RealDigits[t] (* A196820 *)
t = x /. FindRoot[1 == 6 (1 + x^2) Cos[x], {x, 1, 1.6},
WorkingPrecision -> 100]
RealDigits[t] (* A196821 *)
CROSSREFS
Cf. A196914.
Sequence in context: A019925 A101115 A200633 * A176325 A275792 A010481
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 06 2011
STATUS
approved