login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The Chebyshev primes of index 4.
5

%I #30 Sep 08 2022 08:45:59

%S 5,7,17,19,31,37,41,43,53,59,67,73,79,83,101,103,107,127,131,149,157,

%T 163,179,181,197,199,211,223,227,257,269,277,281,317,331,337,347,353,

%U 379,389,419,421,439,461,463,467,479,491,499,509,541,563,569,577,617

%N The Chebyshev primes of index 4.

%C The sequence consists of such odd prime numbers p that satisfy li(psi(p^4)) - li(psi(p^4-1)) < 1/4, where li(x) is the logarithmic integral and psi(x) is the Chebyshev psi function.

%H Dana Jacobsen, <a href="/A196670/b196670.txt">Table of n, a(n) for n = 1..75</a>

%H M. Planat and P. Solé, <a href="http://arxiv.org/abs/1109.6489">Efficient prime counting and the Chebyshev primes</a> arXiv:1109.6489 [math.NT], 2011.

%p # The function PlanatSole(n,r) is in A196667.

%p A196670 := n -> PlanatSole(n,4); # _Peter Luschny_, Oct 23 2011

%t ChebyshevPsi[n_] := Log[LCM @@ Range[n]];

%t Reap[Do[If[LogIntegral[ChebyshevPsi[p^4]] - LogIntegral[ChebyshevPsi[p^4 - 1]] < 1/4, Print[p]; Sow[p]], {p, Prime[Range[2, 120]]}]][[2, 1]] (* _Jean-François Alcover_, Jul 14 2018, updated Dec 06 2018 *)

%o (Magma)

%o Mangoldt:=function(n);

%o if #Factorization(n) eq 1 then return Log(Factorization(n)[1][1]); else return 0; end if;

%o end function;

%o tcheb:=function(n);

%o x:=0;

%o for i in [1..n] do

%o x:=x+Mangoldt(i);

%o end for;

%o return(x);

%o end function;

%o jump4:=function(n);

%o x:=LogIntegral(tcheb(NthPrime(n)^4))-LogIntegral(tcheb(NthPrime(n)^4-1));

%o return x;

%o end function;

%o Set4:=[];

%o for i in [2..1000] do

%o if jump4(i)-1/4 lt 0 then Set4:=Append(Set4,NthPrime(i)); NthPrime(i); end if;

%o end for;

%o Set4;

%o (Sage)

%o def A196670(n) : return PlanatSole(n,4)

%o # The function PlanatSole(n,r) is in A196667.

%o # _Peter Luschny_, Oct 23 2011

%o (Perl) use ntheory ":all"; forprimes { say if 4 *(LogarithmicIntegral(chebyshev_psi($_**4)) - LogarithmicIntegral(chebyshev_psi($_**4-1))) < 1 } 3,100; # _Dana Jacobsen_, Dec 29 2015

%Y Cf. A196667, A196668, A196669.

%K nonn

%O 1,1

%A _Michel Planat_, Oct 05 2011

%E More terms from _Dana Jacobsen_, Dec 29 2015