login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196670
The Chebyshev primes of index 4.
5
5, 7, 17, 19, 31, 37, 41, 43, 53, 59, 67, 73, 79, 83, 101, 103, 107, 127, 131, 149, 157, 163, 179, 181, 197, 199, 211, 223, 227, 257, 269, 277, 281, 317, 331, 337, 347, 353, 379, 389, 419, 421, 439, 461, 463, 467, 479, 491, 499, 509, 541, 563, 569, 577, 617
OFFSET
1,1
COMMENTS
The sequence consists of such odd prime numbers p that satisfy li(psi(p^4)) - li(psi(p^4-1)) < 1/4, where li(x) is the logarithmic integral and psi(x) is the Chebyshev psi function.
LINKS
M. Planat and P. Solé, Efficient prime counting and the Chebyshev primes arXiv:1109.6489 [math.NT], 2011.
MAPLE
# The function PlanatSole(n, r) is in A196667.
A196670 := n -> PlanatSole(n, 4); # Peter Luschny, Oct 23 2011
MATHEMATICA
ChebyshevPsi[n_] := Log[LCM @@ Range[n]];
Reap[Do[If[LogIntegral[ChebyshevPsi[p^4]] - LogIntegral[ChebyshevPsi[p^4 - 1]] < 1/4, Print[p]; Sow[p]], {p, Prime[Range[2, 120]]}]][[2, 1]] (* Jean-François Alcover, Jul 14 2018, updated Dec 06 2018 *)
PROG
(Magma)
Mangoldt:=function(n);
if #Factorization(n) eq 1 then return Log(Factorization(n)[1][1]); else return 0; end if;
end function;
tcheb:=function(n);
x:=0;
for i in [1..n] do
x:=x+Mangoldt(i);
end for;
return(x);
end function;
jump4:=function(n);
x:=LogIntegral(tcheb(NthPrime(n)^4))-LogIntegral(tcheb(NthPrime(n)^4-1));
return x;
end function;
Set4:=[];
for i in [2..1000] do
if jump4(i)-1/4 lt 0 then Set4:=Append(Set4, NthPrime(i)); NthPrime(i); end if;
end for;
Set4;
(Sage)
def A196670(n) : return PlanatSole(n, 4)
# The function PlanatSole(n, r) is in A196667.
# Peter Luschny, Oct 23 2011
(Perl) use ntheory ":all"; forprimes { say if 4 *(LogarithmicIntegral(chebyshev_psi($_**4)) - LogarithmicIntegral(chebyshev_psi($_**4-1))) < 1 } 3, 100; # Dana Jacobsen, Dec 29 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Planat, Oct 05 2011
EXTENSIONS
More terms from Dana Jacobsen, Dec 29 2015
STATUS
approved