login
A196440
a(n) = the sum of numbers k <= n such that GCQ_A(n, k) >= 2 (see definition in comments).
8
0, 0, 3, 4, 12, 11, 25, 30, 38, 49, 63, 63, 88, 99, 113, 130, 150, 161, 187, 198, 224, 247, 273, 285, 322, 345, 371, 400, 432, 455, 493, 522, 554, 589, 627, 651, 700, 735, 773, 808, 858, 893, 943, 984, 1028, 1075, 1125, 1161, 1222, 1269, 1319, 1372, 1428, 1475, 1537, 1590, 1646, 1705, 1767, 1802, 1888, 1947, 2009, 2074, 2142, 2201, 2275
OFFSET
1,3
COMMENTS
Definition of GCQ_A: The greatest common non-divisor of type A (GCQ_A) of two positive integers a and b (a<=b) is the largest positive non-divisor q of numbers a and b such that 1<=q<=a common to a and b; GCQ_A(a, b) = 0, if no such c exists.
GCQ_A(1, b) = GCQ_A(2, b) = 0 for b >=1. GCQ_A(a, b) = 0 or >= 2.
a(n) is also the sum of number k <= n such that LCQ_A(n, k) >= 2.
Definition of LCQ_A: The least common non-divisor of type A (LCQ_A) of two positive integers a and b (a<=b) is the least positive non-divisor q of numbers a and b such that 1<=q<=a common to a and b; LCQ_A(a, b) = 0 if no such c exists.
LCQ_A(1, b) = LCQ_A(2, b) = 0 for b >=1. LCQ_A(a, b) = 0 or >= 2.
LINKS
FORMULA
a(n) = A000217(n) - A196439(n).
EXAMPLE
For n = 6, a(6) = 11 because there are 2 cases k (k = 5, 6) with GCQ_A(6, k) >= 2:
GCQ_A(6, 1) = 0, GCQ_A(6, 2) = 0, GCQ_A(6, 3) = 0, GCQ_A(6, 4) = 0, GCQ_A(6, 5) = 4, GCQ_A(6, 6) = 5. Sum of such numbers k is 11.
Also there are 2 same cases k with LCQ_A(6, k) >= 2:
LCQ_A(6, 1) = 0, LCQ_A(6, 2) = 0, LCQ_A(6, 3) = 0, LCQ_A(6, 4) = 0, LCQ_A(6, 5) = 4, LCQ_A(6, 6) = 4.
PROG
(PARI)
GCQ_A(a, b) = { forstep(m=min(a, b)-1, 2, -1, if(a%m && b%m, return(m))); 0; }; \\ From PARI-program in A196438
A196440(n) = sum(k=1, n, (2<=GCQ_A(n, k))*k); \\ Antti Karttunen, Jun 12 2018
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Nov 26 2011
EXTENSIONS
More terms from Antti Karttunen, Jun 12 2018
STATUS
approved