login
A195945
Powers of 13 which have no zero in their decimal expansion.
23
1, 13, 169, 2197, 28561, 371293, 62748517, 137858491849, 3937376385699289
OFFSET
1,2
COMMENTS
Probably finite. Is 3937376385699289 the largest term?
No further terms up to 13^25000. - Harvey P. Dale, Oct 01 2011
No further terms up to 13^45000. - Vincenzo Librandi, Jul 31 2013
No further terms up to 13^(10^9). - Daniel Starodubtsev, Mar 22 2020
LINKS
M. F. Hasler, Zeroless powers, OEIS Wiki, Mar 07 2014
C. Rivera, Puzzle 607. A zeroless Prime power, on primepuzzles.net, Sept. 24, 2011.
W. Schneider, NoZeros: Powers n^k without Digit Zero (local copy of www.wschnei.de/digit-related-numbers/nozeros.html), as of Jan 30 2003.
FORMULA
Equals A001022 intersect A052382 (as a set).
Equals A001022 o A195944 (as a function).
MATHEMATICA
Select[13^Range[0, 250], DigitCount[#, 10, 0]==0&] (* Harvey P. Dale, Oct 01 2011 *)
PROG
(PARI) for(n=0, 9999, is_A052382(13^n) && print1(13^n, ", "))
(Magma) [13^n: n in [0..2*10^4] | not 0 in Intseq(13^n)]; // Bruno Berselli, Sep 26 2011
CROSSREFS
For other zeroless powers x^n, see A238938 (x=2), A238939, A238940, A195948, A238936, A195908, A195946 (x=11), A195945, A195942, A195943, A103662.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944 and also A020665.
For other related sequences, see A052382, A027870, A102483, A103663.
Sequence in context: A045597 A045600 A001022 * A228389 A020533 A176596
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Sep 25 2011
STATUS
approved