login
A195849
Column 5 of array A195825. Also column 1 of triangle A195839. Also 1 together with the row sums of triangle A195839.
17
1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 14, 16, 21, 27, 32, 34, 36, 38, 44, 54, 67, 77, 84, 88, 95, 107, 128, 152, 174, 188, 200, 215, 242, 281, 329, 370, 402, 428, 462, 513, 589, 674, 754, 816, 873, 940, 1041, 1176, 1333, 1477, 1600, 1710, 1845
OFFSET
0,7
COMMENTS
Note that this sequence contains three plateaus: [1, 1, 1, 1, 1, 1], [4, 4, 4, 4], [13, 13]. For more information see A210843. See also other columns of A195825. - Omar E. Pol, Jun 29 2012
Number of partitions of n into parts congruent to 0, 1 or 6 (mod 7). - Ludovic Schwob, Aug 05 2021
LINKS
FORMULA
G.f.: Product_{k>=1} 1/((1 - x^(7*k))*(1 - x^(7*k-1))*(1 - x^(7*k-6))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n/7)) / (8*sin(Pi/7)*n). - Vaclav Kotesovec, Aug 14 2017
MAPLE
A118277 := proc(n)
7*n^2/8+7*n/8-3/16+3*(-1)^n*(1/16+n/8) ;
end proc:
A195839 := proc(n, k)
option remember;
local ks, a, j ;
if A118277(k) > n then
0 ;
elif n <= 5 then
return 1;
elif k = 1 then
a := 0 ;
for j from 1 do
if A118277(j) <= n-1 then
a := a+procname(n-1, j) ;
else
break;
end if;
end do;
return a;
else
ks := A118277(k) ;
(-1)^floor((k-1)/2)*procname(n-ks+1, 1) ;
end if;
end proc:
A195849 := proc(n)
A195839(n+1, 1) ;
end proc:
seq(A195849(n), n=0..60) ; # R. J. Mathar, Oct 08 2011
MATHEMATICA
m = 61;
Product[1/((1 - x^(7k))(1 - x^(7k - 1))(1 - x^(7k - 6))), {k, 1, m}] + O[x]^m // CoefficientList[#, x]& ( Jean-François Alcover, Apr 13 2020, after Ilya Gutkovskiy *)
PROG
(GW-BASIC)' A program with two A-numbers by Omar E. Pol, Jun 10 2012
10 Dim A118277(100), A057077(100), a(100): a(0)=1
20 For n = 1 to 61: For j = 1 to n
30 If A118277(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A118277(j))
40 Next j: Print a(n-1); : Next n
KEYWORD
nonn
AUTHOR
Omar E. Pol, Oct 07 2011
STATUS
approved