login
A195262
G.f.: A(x) = Sum_{n>=0} x^n*A(x)^A001969(n+1), where A001969 lists numbers with an even number of 1's in their binary expansion.
1
1, 1, 4, 21, 125, 805, 5459, 38403, 277667, 2050771, 15405655, 117344350, 904175038, 7035182178, 55197856415, 436221495843, 3469249248383, 27744896161177, 222987118478532, 1800106801933350, 14589674016207940, 118674224290447850, 968474133792224994
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 21*x^3 + 125*x^4 + 805*x^5 + 5459*x^6 +...
where
A(x) = 1 + x*A(x)^3 + x^2*A(x)^5 + x^3*A(x)^6 + x^4*A(x)^9 + x^5*A(x)^10 + x^6*A(x)^12 + x^7*A(x)^15 + x^8*A(x)^17 +...
and exponents A001969(n) begin:
[0,3,5,6,9,10,12,15,17,18,20,23,24,27,29,30,33,34,36,39,40,...].
PROG
(PARI) {A000120(n)=n-sum(k=1, #binary(n), floor(n/2^k))}
{A001969(n) = (1/2)*(4*n+1-(-1)^A000120(n))}
{a(n)=local(A=1+x+x*O(x^n)); for(k=1, n, A=1+sum(j=1, n, x^j*A^A001969(j))); polcoeff(A, n)}
CROSSREFS
Cf. A001969 (evil numbers), A195261.
Sequence in context: A093965 A370545 A366115 * A162480 A275758 A003168
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 13 2011
STATUS
approved