login
A195261
G.f.: A(x) = 1 + Sum_{n>=1} x^n*A(x)^A000069(n), where A000069 lists numbers with an odd number of 1's in their binary expansion.
1
1, 1, 3, 12, 56, 284, 1520, 8449, 48303, 282207, 1677489, 10112546, 61678702, 379919672, 2359991520, 14767164162, 92993252612, 588904075546, 3748029131834, 23960546501520, 153790930664222, 990690415079898, 6402865318618654, 41506375396111624
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 56*x^4 + 284*x^5 + 1520*x^6 +...
where
A(x) = 1 + x*A(x) + x^2*A(x)^2 + x^3*A(x)^4 + x^4*A(x)^7 + x^5*A(x)^8 + x^6*A(x)^11 + x^7*A(x)^13 + x^8*A(x)^14 +...
and exponents A000069(n) begin:
[1,2,4,7,8,11,13,14,16,19,21,22,25,26,28,31,32,35,37,38,41,...].
PROG
(PARI) {A000069(n)=2*n+1-subst(Pol(binary(n)), x, 1)%2}
{a(n)=local(A=1+x+x*O(x^n)); for(k=1, n, A=1+sum(j=1, n, x^j*A^A000069(j))); polcoeff(A, n)}
CROSSREFS
Cf. A000069 (odious numbers), A195262.
Sequence in context: A350482 A120921 A226316 * A276902 A192132 A179486
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 13 2011
STATUS
approved