login
A194587
A triangle whose rows add up to the numerators of the Bernoulli numbers (with B(1) = 1/2). T(n, k) for n >= 0, 0 <= k <= n.
3
1, 0, 1, 0, -3, 4, 0, 1, -4, 3, 0, -15, 140, -270, 144, 0, 1, -20, 75, -96, 40, 0, -21, 868, -5670, 13104, -12600, 4320, 0, 1, -84, 903, -3360, 5600, -4320, 1260, 0, -15, 2540, -43470, 244944, -630000, 820800, -529200, 134400, 0, 1, -340, 9075, -74592, 278040, -544320, 582120, -322560, 72576
OFFSET
0,5
FORMULA
T(n, k) = (-1)^(n - k) * A131689(n, k) * A141056(n) / (k + 1).
Sum_{k=0..n} T(n, k) = A164555(n).
T(n, n) = A325871(n).
EXAMPLE
[0] 1;
[1] 0, 1;
[2] 0, -3, 4;
[3] 0, 1, -4, 3;
[4] 0, -15, 140, -270, 144;
[5] 0, 1, -20, 75, -96, 40;
[6] 0, -21, 868, -5670, 13104, -12600, 4320;
[7] 0, 1, -84, 903, -3360, 5600, -4320, 1260;
MAPLE
A194587 := proc(n, k) local i;
mul(i, i = select(isprime, map(i -> i + 1, numtheory[divisors](n)))):
(-1)^(n-k)*Stirling2(n, k) * k! / (k + 1): %%*% end:
seq(print(seq(A194587(n, k), k = 0..n)), n = 0..7);
MATHEMATICA
T[n_, k_] := Times @@ Select[Divisors[n]+1, PrimeQ] (-1)^(n-k) StirlingS2[n, k]* k!/(k+1); Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 26 2019 *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Sep 17 2011
EXTENSIONS
Edited by Peter Luschny, Jun 26 2019
Edited and flipped signs in odd indexed rows by Peter Luschny, Aug 20 2022
STATUS
approved