login
A194295
Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n^2, r=(1+sqrt(5))/2, the golden ratio.
2
1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 6, 5, 5, 6, 7, 5, 7, 6, 5, 7, 8, 6, 7, 8, 7, 6, 8, 8, 8, 7, 9, 8, 8, 8, 9, 9, 9, 9, 9, 10, 8, 10, 8, 10, 10, 10, 10, 10, 10, 9, 11, 10, 10, 11, 11, 11, 11, 10, 11, 12, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13
OFFSET
1,2
COMMENTS
See A194285.
EXAMPLE
First eight rows:
1
2..2
3..3..3
4..4..4..4
4..5..6..5..5
6..7..5..7..6..5
7..8..6..7..8..7..6
8..8..8..7..9..8..8..8
MATHEMATICA
r = GoldenRatio;
f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
g[n_, k_] := Sum[f[n, k, i], {i, 1, n^2}]
TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
Flatten[%] (* A194295 *)
CROSSREFS
Cf. A194295.
Sequence in context: A365275 A071996 A072747 * A194287 A194303 A124755
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 21 2011
STATUS
approved