login
A193851
Mirror of the triangle A193850.
4
2, 8, 4, 26, 20, 8, 80, 72, 48, 16, 242, 232, 192, 112, 32, 728, 716, 656, 496, 256, 64, 2186, 2172, 2088, 1808, 1248, 576, 128, 6560, 6544, 6432, 5984, 4864, 3072, 1280, 256, 19682, 19664, 19520, 18848, 16832, 12800, 7424, 2816, 512, 59048, 59028
OFFSET
0,1
COMMENTS
A193851 is obtained by reversing the rows of the triangle A193850.
FORMULA
Write w(n,k) for the triangle at A193850. The triangle at A193851 is then given by w(n,n-k).
EXAMPLE
First six rows:
2
8....4
26...20....8
80...72...40..16
242...232...192...112...32
728...716...656...496..256..64
MATHEMATICA
z = 10;
p[n_, x_] := (x + 2)^n;
q[0, x_] := 1; q[n_, x_] := x*q[n - 1, x] + 1;
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193850 *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* A193851 *)
TableForm[Table[Reverse[h[n]/2], {n, 0, z}]]
Flatten[Table[Reverse[h[n]]/2, {n, -1, z}]] (* A193852 *)
TableForm[Table[h[n]/2, {n, 0, z}]]
Flatten[Table[h[n]/2, {n, -1, z}]] (* A193853 *)
CROSSREFS
Sequence in context: A369178 A253884 A054788 * A276624 A193847 A019194
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 07 2011
STATUS
approved