login
A193463
Row sums of triangle A076732.
3
1, 1, 6, 22, 117, 705, 4972, 39916, 360105, 3606865, 39721266, 477061026, 6205806061, 86925018817, 1304396077272, 20877063837400, 355003736855697, 6391465311099681, 121460116022428510, 2429579599296960430, 51027940329395658981, 1122742916106886416001
OFFSET
1,3
COMMENTS
a(n)/ceiling(n/2), i.e., a(n) divided by the positive integers repeated, leads to another sequence of integer numbers [1, 1, 3, 11, 39, 235, 1243, 9979, ... ].
LINKS
FORMULA
a(n) = Sum_{k=1..n} A076732(n,k).
a(n) = Sum_{k=1..n} (k/(n-k)!)*A047920(n,k).
a(n) = Sum_{k=1..n} (k/(n-k)!) * Sum_{j=0..k-1} (-1)^j*binomial(k-1,j)*(n-1-j)!.
MAPLE
A193463:=proc(n): add(A076732(n, k), k=1..n) end: A076732:=proc(n, k): (k/(n-k)!)*A047920(n, k) end: A047920:=proc(n, k): add(((-1)^j)*binomial(k-1, j)*(n-1-j)!, j=0..k-1) end: seq(A193463(n), n=1..22);
MATHEMATICA
A000240[n_] := Subfactorial[n] - (-1)^n;
T[n_, k_] := T[n, k] = Switch[k, 1, 1, n, A000240[n], _, k*T[n - 1, k - 1] + T[n - 1, k]];
a[n_] := Sum[T[n, k], {k, 1, n}];
Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Nov 14 2023 *)
CROSSREFS
Sequence in context: A027296 A179601 A151495 * A319214 A009358 A213130
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, Jul 27 2011
STATUS
approved