login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193227
Semiprimes p*q such that p+1 and q+1 are semiprimes.
2
9, 15, 25, 39, 65, 111, 169, 183, 185, 219, 305, 365, 471, 481, 579, 785, 793, 831, 939, 949, 965, 1191, 1263, 1369, 1371, 1385, 1565, 1623, 1839, 1983, 1985, 2019, 2041, 2105, 2199, 2257, 2271, 2285, 2509, 2631, 2701, 2705, 2991
OFFSET
1,1
COMMENTS
Numbers of the form A005383(i)*A005383(j) for i,j >= 1. - Altug Alkan, Mar 22 2018
LINKS
EXAMPLE
1371 is in the sequence because 1371 = 3 * 457, and 3 + 1 = 4 and 457 + 1 = 2 * 229 are semiprimes.
MAPLE
with(numtheory):for n from 2 to 3000 do: x:=factorset(n):y:=bigomega(n):z:=x[1]:zz:=n/z:if y=2 and type(z, prime)=true and type(zz, prime) = true and bigomega(z+1)=2 and bigomega(zz+1)=2 then printf(`%d, `, n): else fi:od:
# Alternate:
N:= 10000: # to get all terms <= N
P:= select(p -> isprime(p) and numtheory:-bigomega(p+1)=2, [$1..N/3]):
nP:= nops(P):
sort(select(`<=`, [seq(seq(P[i]*P[j], i=1..j), j=1..nP)], N)); # Robert Israel, Mar 22 2018
MATHEMATICA
Take[Sort[Times@@@Select[Flatten[Table[{Prime[p], Prime[q]}, {p, 2, 200}, {q, p}], 1], PrimeOmega[#[[1]] + 1] == 2 && PrimeOmega[#[[2]] + 1] == 2 &]], 45] (* Alonso del Arte, Jul 18 2011 *)
cQ[n_]:=Module[{fi=FactorInteger[n]}, Which[PrimeOmega[n]==2&&IntegerQ[Sqrt[ n]], PrimeOmega[ Sqrt[n]+1]==2, PrimeOmega[n] == 2, PrimeOmega[ 1+ fi[[All, 1]]] =={2, 2}, True, False]]; Select[Range[3000], cQ]
PROG
(PARI) list(lim)=my(v=List(), u=List(), t); forprime(p=3, lim\3, if(isprime((p+1)/2), listput(v, p))); for(i=1, #v, for(j=i, #v, t=v[i]*v[j]; if(t>lim, break); listput(u, t))); vecsort(Vec(u)) \\ Charles R Greathouse IV, Jul 18 2011
CROSSREFS
Subsequence of A001358.
Sequence in context: A342418 A251415 A109888 * A014003 A333788 A082549
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jul 18 2011
STATUS
approved