login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193165
Semiprimes m = p*q such that p-1 and q-1 are semiprimes.
2
25, 35, 49, 55, 77, 115, 121, 161, 235, 253, 295, 329, 413, 415, 517, 529, 535, 581, 649, 749, 835, 895, 913, 1081, 1135, 1169, 1177, 1253, 1315, 1357, 1589, 1735, 1795, 1837, 1841, 1909, 1915, 1969, 2209, 2335, 2395, 2429, 2461, 2497, 2513, 2515, 2681, 2773, 2815, 2893, 2935
OFFSET
1,1
COMMENTS
Numbers of the form A005385(i)*A005385(j) for i,j >= 1. - Altug Alkan, Mar 22 2018
LINKS
EXAMPLE
1969 is in the sequence because 1969 = 11*179, and 11-1 = 2*5 and 179-1 = 2*89 are semiprimes.
MAPLE
with(numtheory):for n from 2 to 3000 do: x:=factorset(n):y:=bigomega(n):z:=x[1]:zz:=n/z:if y=2 and type(z, prime)=true and type(zz, prime) = true and bigomega(z-1)=2 and bigomega(zz-1)=2 then printf(`%d, `, n): else fi:od:
# Alternate:
N:= 10000: # to get all terms <= N
P:= select(p -> isprime(p) and numtheory:-bigomega(p-1)=2, [$1..N/5]):
nP:= nops(P):
sort(select(`<=`, [seq(seq(P[i]*P[j], i=1..j), j=1..nP)], N)); # Robert Israel, Mar 23 2018
MATHEMATICA
spsQ[n_]:=Module[{f=Transpose[FactorInteger[n]][[1]]}, PrimeOmega[n] == PrimeOmega[First[f]-1] == PrimeOmega[Last[f]-1]==2]; Select[Range[ 3000], spsQ] (* Harvey P. Dale, Jul 27 2011 *)
PROG
(PARI) upTo(lim)=my(u=List(), v=List(), t); forprime(p=2, lim\5, if(isprime(p\2), listput(u, p))); for(i=1, #u, for(j=1, i, t=u[i]*u[j]; if(t>lim, break, listput(v, t)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 30 2011
CROSSREFS
Subsequence of A001358.
Sequence in context: A287918 A054550 A107472 * A060976 A036320 A339520
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jul 17 2011
STATUS
approved