login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192937
a(n) = 100*a(n-1) - (n-1) with a(1)=100.
1
100, 9999, 999898, 99989797, 9998979696, 999897969595, 99989796959494, 9998979695949393, 999897969594939292, 99989796959493929191, 9998979695949392919090, 999897969594939291908989
OFFSET
1,1
FORMULA
From Bruno Berselli, Aug 02 2011: (Start)
G.f.: x*(100-201*x+100*x^2)/((1-100*x)*(1-x)^2).
a(n) = (9800*100^n+99*n+1)/9801. (End)
EXAMPLE
For n=2: a(2)=100*a(1)-(2-1)=100*100-1=10000-1=9999.
For n=3: a(3)=100*a(2)-(3-1)=100*9999-2=999900-2=999898.
MAPLE
a[1]:=100; for n from 2 to 12 do a[n]:=100*a[n-1]-(n-1); end do;
MATHEMATICA
LinearRecurrence[{102, -201, 100}, {100, 9999, 999898}, 20] (* G. C. Greubel, Feb 06 2019 *)
RecurrenceTable[{a[1]==100, a[n]==100a[n-1]-n+1}, a, {n, 20}] (* Harvey P. Dale, May 17 2019 *)
PROG
(Magma) [n lt 2 select 100 else 100*Self(n-1)-n+1: n in [1..14]]; // Bruno Berselli, Aug 02 2011
(PARI) vector(20, n, (98*10^(2*n+2) +99*n +1)/9801) \\ G. C. Greubel, Feb 06 2019
(Sage) [(98*10^(2*n+2) +99*n +1)/9801 for n in (1..20)] # G. C. Greubel, Feb 06 2019
(GAP) List([1..20], n -> (98*10^(2*n+2) +99*n +1)/9801); # G. C. Greubel, Feb 06 2019
CROSSREFS
Sequence in context: A117687 A262806 A108741 * A029798 A029775 A077440
KEYWORD
nonn,easy
AUTHOR
Francesco Daddi, Aug 02 2011
STATUS
approved