OFFSET
0,4
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,1,-1,-1).
FORMULA
a(n)=2*a(n-1)+a(n-2)-a(n-3)-a(n-4).
G.f.: -(1+x)*(2*x-1) / ( (x-1)*(x^3+2*x^2+x-1) ). - R. J. Mathar, May 06 2014
a(n)-a(n-1) = A002478(n-3). - R. J. Mathar, May 06 2014
EXAMPLE
MATHEMATICA
q = x^3; s = x^2 + 2 x + 1; z = 40;
p[0, x_] := 1; p[n_, x_] := x^n + p[n - 1, x];
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192805 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A002478 *)
u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
(* A077864 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 10 2011
STATUS
approved