login
A192805
Constant term in the reduction of the polynomial 1+x+x^2+...+x^n by x^3->x^2+2x+1. See Comments.
1
1, 1, 1, 2, 3, 6, 12, 25, 53, 113, 242, 519, 1114, 2392, 5137, 11033, 23697, 50898, 109323, 234814, 504356, 1083305, 2326829, 4997793, 10734754, 23057167, 49524466, 106373552, 228479649, 490751217, 1054084065, 2264066146, 4862985491
OFFSET
0,4
COMMENTS
For discussions of polynomial reduction, see A192232 and A192744.
FORMULA
a(n)=2*a(n-1)+a(n-2)-a(n-3)-a(n-4).
G.f.: -(1+x)*(2*x-1) / ( (x-1)*(x^3+2*x^2+x-1) ). - R. J. Mathar, May 06 2014
a(n)-a(n-1) = A002478(n-3). - R. J. Mathar, May 06 2014
EXAMPLE
The first five polynomials p(n,x) and their reductions:
p(1,x)=1 -> 1
p(2,x)=x+1 -> x+1
p(3,x)=x^2+x+1 -> x^2+x+1
p(4,x)=x^3+x^2+x+1 -> 2x^2+3x+2
p(5,x)=x^4+x^3+x^2+x+1 -> 5x^2+6*x+3, so that
A192805=(1,1,1,2,3,...), A002478=(0,1,1,3,6,...), A077864=(0,0,1,2,5,...).
MATHEMATICA
q = x^3; s = x^2 + 2 x + 1; z = 40;
p[0, x_] := 1; p[n_, x_] := x^n + p[n - 1, x];
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192805 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A002478 *)
u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
(* A077864 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 10 2011
STATUS
approved