login
A192425
Coefficient of x in the reduction by x^2 -> x+2 of the polynomial p(n,x) defined below in Comments.
6
0, 1, 1, 6, 9, 31, 60, 169, 369, 954, 2201, 5479, 12960, 31721, 75881, 184326, 443169, 1072871, 2585340, 6249329, 15074649, 36413754, 87877681, 212208719, 512231040, 1236774481, 2985612241, 7208270406, 17401713849, 42012408751
OFFSET
0,4
COMMENTS
The polynomial p(n,x) is defined by ((x+d)/2)^n + ((x-d)/2)^n, where d = sqrt(x^2+4). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+2, see A192232.
LINKS
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
FORMULA
G.f.: x*(1+x^2)/((1+x-x^2)*(1-2*x-x^2)). Colin Barker, Nov 13 2012
From Peter Bala, Mar 26 2015: (Start)
The following remarks assume the o.g.f. for this sequence is x*(1 + x^2)/((1 + x - x^2)*(1 - 2*x - x^2)).
This sequence is a fourth-order linear divisibility sequence. It is the case P1 = 1, P2 = -2, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
exp( Sum_{n >= 1} 3*a(n)*x^n/n ) = 1 + Sum_{n >= 1} 3*Pell(n)*x^n.
exp( Sum_{n >= 1} (-3)*a(n)*x^n/n ) = 1 + Sum_{n >= 1} 3*Fibonacci(n)*(-x)^n. Cf. A002878. (End)
From G. C. Greubel, Jul 12 2023: (Start)
a(n) = Sum_{j=0..n} T(n, j)*A001045(j), where T(n, k) = [x^k] ((x + sqrt(x^2+4))^n + (x - sqrt(x^2+4))^n)/2^n.
a(n) = a(n-1) + 4*a(n-2) - a(n-3) - a(n-4).
a(n) = (1/3)*( 2*A000129(n+1) - 2*A000129(n) - (-1)^n*A000032(n)). (End)
EXAMPLE
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x) = 2 -> 2
p(1,x) = x -> x
p(2,x) = 2 + x^2 -> 4 + x
p(3,x) = 3*x + x^3 -> 2 + 6*x
p(4,x) = 2 + 4*x^2 + x^4 -> 16 + 9*x.
From these, read A192423(n) = = 2*A192424(n) = (2, 0, 4, 2, 16, ...) and a(n) = (0, 1, 1, 6, 9, ...).
MATHEMATICA
(See A192423.)
LinearRecurrence[{1, 4, -1, -1}, {0, 1, 1, 6}, 40] (* G. C. Greubel, Jul 12 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x^2)/((1+x-x^2)*(1-2*x-x^2)) )); // G. C. Greubel, Jul 12 2023
(SageMath)
@CachedFunction
def a(n): # a = A192425
if (n<4): return (0, 1, 1, 6)[n]
else: return a(n-1) +4*a(n-2) -a(n-3) -a(n-4)
[a(n) for n in range(41)] # G. C. Greubel, Jul 12 2023
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 30 2011
STATUS
approved