login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192403
G.f. A(x) satisfies A(x) = 1 + Sum_{n>=1} A(x)^n * 2*x^n/(1 - 2*x^(2*n)).
2
1, 2, 6, 26, 106, 474, 2210, 10638, 52578, 265286, 1360702, 7074030, 37191694, 197398394, 1056255758, 5691813546, 30860701490, 168236407482, 921576598970, 5070138584230, 28002574339634, 155204886300414, 862985636296302, 4812513873922710
OFFSET
0,2
COMMENTS
Related q-series identity:
Sum_{n>=1} z^n*y*q^n/(1-y*q^(2*n)) = Sum_{n>=1} y^n*z*q^(2*n-1)/(1-z*q^(2*n-1)); here q=x, y=2, z=A(x).
FORMULA
G.f. satisfies: A(x) = 1 + Sum_{n>=1} 2^n*A(x)*x^(2*n-1)/(1 - A(x)*x^(2*n-1)).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 26*x^3 + 106*x^4 + 474*x^5 + 2210*x^6 +...
which satisfies the following relations:
A(x) = 1 + A(x)*2*x/(1-2*x^2) + A(x)^2*2*x^2/(1-2*x^4) + A(x)^3*2*x^3/(1-2*x^6) +...
A(x) = 1 + 2*A(x)*x/(1-A(x)*x) + 4*A(x)*x^3/(1-A(x)*x^3) + 8*A(x)*x^5/(1-A(x)*x^5) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, A^m*2*x^m/(1-2*x^(2*m)+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, 2^m*A*x^(2*m-1)/(1-A*x^(2*m-1)+x*O(x^n)))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A290958 A323265 A285024 * A282618 A192435 A296217
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 30 2011
STATUS
approved