login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192400
G.f. A(x) satisfies A(x) = 1 + Sum_{n>=1} A(x)^n * x^(2*n-1)/(1 - x^(2*n-1)).
3
1, 1, 2, 5, 11, 26, 64, 158, 399, 1027, 2675, 7052, 18788, 50487, 136711, 372687, 1021942, 2816873, 7800510, 21691134, 60543553, 169561453, 476351239, 1342002198, 3790565335, 10732246631, 30453309502, 86589559266, 246672752090
OFFSET
0,3
COMMENTS
Related q-series identity:
Sum_{n>=1} y^n*z*q^(2*n-1)/(1-z*q^(2*n-1)) = Sum_{n>=1} z^n*y*q^n/(1-y*q^(2*n)); here q=x, y=A(x), z=1.
FORMULA
G.f. satisfies: A(x) = 1 + Sum_{n>=1} A(x)*x^n/(1 - A(x)*x^(2*n)).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 26*x^5 + 64*x^6 +...
which satisfies the following relations:
A(x) = 1 + A(x)*x/(1-x) + A(x)^2*x^3/(1-x^3) + A(x)^3*x^5/(1-x^5) +...
A(x) = 1 + A(x)*x/(1-A(x)*x^2) + A(x)*x^2/(1-A(x)*x^4) + A(x)*x^3/(1-A(x)*x^6) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, A^m*x^(2*m-1)/(1-x^(2*m-1)+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, A*x^m/(1-A*x^(2*m)+x*O(x^n)))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A082397 A051286 A192475 * A308154 A182053 A306563
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 30 2011
STATUS
approved