login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192396
Square array T(n, k) = floor(((k+1)^n - (1+(-1)^k)/2)/2) read by antidiagonals.
2
0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 4, 4, 2, 0, 0, 8, 13, 8, 2, 0, 0, 16, 40, 32, 12, 3, 0, 0, 32, 121, 128, 62, 18, 3, 0, 0, 64, 364, 512, 312, 108, 24, 4, 0, 0, 128, 1093, 2048, 1562, 648, 171, 32, 4, 0, 0, 256, 3280, 8192, 7812, 3888, 1200, 256, 40, 5, 0
OFFSET
0,8
COMMENTS
T(n,k) is the number of compositions of odd natural numbers into n parts <=k.
EXAMPLE
T(2,4)=12: there are 12 compositions of odd natural numbers into 2 parts <=4
1: (0,1), (1,0);
3: (1,2), (2,1), (0,3), (3,0);
5: (1,4), (4,1), (2,3), (3,2);
7: (3,4), (4,3).
The table starts
0, 0, 0, 0, 0, 0, ... A000004;
0, 1, 1, 2, 2, 3, ... A004526;
0, 2, 4, 8, 12, 18, ... A007590;
0, 4, 13, 32, 62, 108, ... A036487;
0, 8, 40, 128, 312, 648, ... A191903;
0, 16, 121, 512, 1562, 3888, ... A191902;
. . . . ...
with columns: A000004, A000079, A003462, A004171, A128531, A081341, ... .
Antidiagonal triangle begins:
0;
0, 0;
0, 1, 0;
0, 2, 1, 0;
0, 4, 4, 2, 0;
0, 8, 13, 8, 2, 0;
0, 16, 40, 32, 12, 3, 0;
0, 32, 121, 128, 62, 18, 3, 0;
0, 64, 364, 512, 312, 108, 24, 4, 0;
MAPLE
A192396 := proc(n, k) (k+1)^n-(1+(-1)^k)/2 ; floor(%/2) ; end proc:
seq(seq( A192396(d-k, k), k=0..d), d=0..10) ; # R. J. Mathar, Jun 30 2011
MATHEMATICA
T[n_, k_]:= Floor[((k+1)^n - (1+(-1)^k)/2)/2];
Table[T[n-k, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Magma)
A192396:= func< n, k | Floor(((k+1)^n - (1+(-1)^k)/2)/2) >;
[A192396(n-k, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 11 2023
(SageMath)
def A192396(n, k): return ((k+1)^n - ((k+1)%2))//2
flatten([[A192396(n-k, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 11 2023
KEYWORD
nonn,tabl,easy
AUTHOR
Adi Dani, Jun 29 2011
STATUS
approved