login
A192080
Expansion of 1/((1-x)^6 - x^6).
9
1, 6, 21, 56, 126, 252, 463, 804, 1365, 2366, 4368, 8736, 18565, 40410, 87381, 184604, 379050, 758100, 1486675, 2884776, 5592405, 10919090, 21572460, 43144920, 87087001, 176565486, 357913941, 723002336, 1453179126, 2906358252
OFFSET
0,2
FORMULA
a(n) = abs(A006090(n)) = (-1)^n * A006090(n).
G.f.: 1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)).
From G. C. Greubel, Apr 11 2023: (Start)
a(n) = (2^(n+5) + A010892(n) - 2*A010892(n-1) - 27*(A057083(n) - 2*A057083(n-1)))/6.
a(n) = (2^(n+5) + A057079(n+2) - 27*A057681(n+1))/6. (End)
MATHEMATICA
CoefficientList[Series[1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2012 *)
LinearRecurrence[{6, -15, 20, -15, 6}, {1, 6, 21, 56, 126}, 30] (* Harvey P. Dale, Feb 22 2017 *)
PROG
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2))));
(Maxima) makelist(coeff(taylor(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)), x, 0, n), x, n), n, 0, 29);
(PARI) Vec(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2))+O(x^99)) \\ Charles R Greathouse IV, Jun 23 2011
(SageMath)
def A192080_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x)^6-x^6) ).list()
A192080_list(51) # G. C. Greubel, Apr 11 2023
CROSSREFS
Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), A049016 (m=5), this sequence (m=6), A049017 (m=7), A290995 (m=8), A306939 (m=9).
Sequence in context: A140228 A264926 A006090 * A290993 A373937 A275936
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jun 23 2011
STATUS
approved