login
A192034
Least k such that (product of proper divisors of k) mod (sum of proper divisors of k) equals n.
1
2, 8, 4, 9, 14, 25, 15, 49, 22, 18, 21, 57, 45, 169, 34, 69, 38, 205, 143, 119, 46, 87, 217, 93, 130, 133, 58, 323, 62, 111, 160, 553, 319, 63, 74, 129, 30, 305, 82, 75, 86, 36, 68, 335, 48, 159, 301, 355, 369, 171, 106, 177
OFFSET
0,1
COMMENTS
Greedy inverse of A191906.
EXAMPLE
a(0)=2 because A007956(2) mod A001065(2) = 1 mod 1 = 0, and 2 is the smallest number for which this is the case;
a(1)=8 because A007956(8) mod A001065(8) = 8 mod 7 = 1, and 8 is the smallest number for which this is the case;
a(2)=4 because A007956(4) mod A001065(4) = 2 mod 3 = 2, and 4 is the smallest number for which this is the case.
MAPLE
A192034 := proc(n) local k ; for k from 2 do if A191906(k) = n then return k ; end if; end do: end proc: # R. J. Mathar, Jul 01 2011
MATHEMATICA
ds[n_]:=Module[{divs=Most[Divisors[n]]}, Mod[Times@@divs, Total[divs]]]; Join[ {2}, Transpose[Table[SelectFirst[Table[{n, ds[n]}, {n, 2, 2000}], #[[2]] == i&], {i, 60}]][[1]]] (* Harvey P. Dale, Apr 11 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected by R. J. Mathar, Jul 01 2011
Example section corrected by Jon E. Schoenfield, Feb 24 2019
STATUS
approved