OFFSET
0,6
COMMENTS
A pyramid in a dispersed Dyck path is a factor of the form U^h D^h, h being the height of the pyramid and U=(1,1), D=(1,-1). A pyramid in a dispersed Dyck path w is maximal if, as a factor in w, it is not immediately preceded by a U and immediately followed by a D. The pyramid weight of a dispersed Dyck path is the sum of the heights of its maximal pyramids.
Row n has 1 + floor(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
LINKS
A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
FORMULA
EXAMPLE
T(6,2)=10 because we have HH(UD)(UD), HH(UUDD), H(UD)H(UD), H(UD)(UD)H, H(UUDD)H, (UD)HH(UD), (UD)H(UD)H, (UD)(UD)HH, (UUDD)HH, and U(UD)(UD)D, where U=(1,1), D=(1,-1), H=(1,0); the maximal pyramids are shown between parentheses.
Triangle starts:
1;
1;
1, 1;
1, 2;
1, 3, 2;
1, 4, 5;
1, 5, 10, 4;
1, 6, 16, 12;
1, 7, 24, 30, 8;
MAPLE
a := (z-1)*(2*t*z^2+z-1): c := -1+t*z^2: eq := a*z*G^2+a*G+c: f := RootOf(eq, G): fser := simplify(series(f, z = 0, 20)): for n from 0 to 16 do P[n] := sort(expand(coeff(fser, z, n))) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 01 2011
STATUS
approved