login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108786
Yet another version of the Catalan triangle A008315.
1
1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 5, 1, 5, 9, 5, 1, 6, 14, 14, 1, 7, 20, 28, 14, 1, 8, 27, 48, 42, 1, 9, 35, 75, 90, 42, 1, 10, 44, 110, 165, 132, 1, 11, 54, 154, 275, 297, 132, 1, 12, 65, 208, 429, 572, 429, 1, 13, 77, 273, 637, 1001, 1001, 429, 1, 14, 90, 350, 910, 1638, 2002
OFFSET
0,6
REFERENCES
J. H. Conway and D. A. Smith, On Quaternions and Octonions, A K Peters, Ltd., Natick, MA, 2003. See p. 60. MR1957212 (2004a:17002)
LINKS
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1997), 318-328.
EXAMPLE
.......|...1
.......|.......1
.......|...1.......1
.......|.......2.......1
.......|...2.......3.......1
.......|.......5.......4.......1
.......|...5.......9.......5.......1
.......|......14......14.......6.......1
.......|..14......28......20.......7.......1
.......|......42......48......27.......8.......1
MAPLE
A008315 := proc(n, k)
binomial(n, k)-binomial(n, k-1) ;
end:
for n from 0 to 30 do
for k from 0 to n/2 do
printf("%d, ", A008315(n, k)) ;
od:
od: # R. J. Mathar, Feb 13 2008
CROSSREFS
See A008315 (the main entry for this triangle) for more information.
Sequence in context: A239030 A165999 A049280 * A008315 A191318 A341315
KEYWORD
nonn,easy,tabf
AUTHOR
N. J. A. Sloane, Nov 09 2006
STATUS
approved