login
A190917
Number of permutations of n copies of 1..3 introduced in order 1..3 with no element equal to another within a distance of 1.
11
1, 1, 5, 29, 182, 1198, 8142, 56620, 400598, 2872754, 20824778, 152303410, 1122149800, 8319825040, 62017475600, 464452683432, 3492568119566, 26358270711370, 199565061455634, 1515311001158482, 11535716330003876, 88025068713285476, 673124069796140900
OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1111 (terms 1..200 from R. H. Hardin)
R. J. Mathar, A class of multinomial permutations avoiding object clusters, vixra:1511.0015 (2015), sequence M_{3,m}/3!.
FORMULA
a(n) = A110706(n) / 6 for n >= 1.
n*(n+1)*a(n) - (n+1)*(7*n-4)*a(n-1) - 8*(n-2)^2*a(n-2) = 0. - R. J. Mathar, Nov 01 2015 from A110706
EXAMPLE
All solutions for n=2:
1 1 1 1 1
2 2 2 2 2
3 3 3 3 1
1 2 2 1 3
3 3 1 2 2
2 1 3 3 3
MAPLE
a:= proc(n) option remember; `if`(n<3, [1$2, 5][n+1],
((7*n-4)*a(n-1)+8*(n-2)^2*a(n-2)/(n+1))/n)
end:
seq(a(n), n=0..22); # Alois P. Heinz, Sep 09 2023
MATHEMATICA
Table[(1/3)*Sum[Binomial[n-1, k]*(Binomial[n-1, k]*Binomial[2*n+1-2*k, n+1] + Binomial[n-1, k+1]*Binomial[2*n-2*k, n+1]), {k, 0, Floor[n/2]}], {n, 1, 25}] (* G. C. Greubel, Nov 24 2018 *)
PROG
(PARI) A190917(n) = sum(k=0, n\2, binomial(n-1, k)*(binomial(n-1, k)*binomial(2*n+1-2*k, n+1)+binomial(n-1, k+1)*binomial(2*n-2*k, n+1))) / 3; \\ Max Alekseyev, Dec 10 2017
(Magma) [(&+[Binomial(n-1, k)*(Binomial(n-1, k)*Binomial(2*n+1-2*k, n+1) + Binomial(n-1, k+1)*Binomial(2*n-2*k, n+1)): k in [0..Floor(n/2)]])/3: n in [1..25]]; // G. C. Greubel, Nov 24 2018
(Sage) [(1/3)*sum(binomial(n-1, k)*(binomial(n-1, k)*binomial(2*n+1-2*k, n+1) + binomial(n-1, k+1)*binomial(2*n-2*k, n+1)) for k in range(1+floor(n/2))) for n in (1..25)] # G. C. Greubel, Nov 24 2018
CROSSREFS
Column 3 of A322013.
Cf. A000012 (b=2), A190918 (b=4), A190920 (b=5), A190923 (b=6), A190927 (b=7), A190932 (b=8), A321987 (b=9), A322061 (b=10).
Sequence in context: A290117 A153296 A194723 * A153391 A175891 A081336
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 23 2011
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Sep 09 2023
STATUS
approved