login
A190406
Decimal expansion of Sum_{k>=1} (1/2)^S(k-1), where S=A001844 (centered square numbers).
4
5, 3, 1, 3, 7, 2, 1, 0, 0, 1, 1, 5, 2, 7, 7, 1, 3, 5, 4, 7, 9, 8, 7, 9, 8, 5, 8, 9, 6, 2, 5, 5, 3, 5, 3, 1, 7, 1, 2, 8, 4, 3, 2, 0, 1, 8, 6, 2, 0, 6, 6, 3, 9, 4, 0, 7, 8, 8, 8, 7, 1, 6, 1, 3, 5, 7, 8, 9, 0, 6, 8, 8, 0, 2, 3, 7, 7, 6, 0, 4, 7, 6, 0, 7, 3, 0, 3, 4, 5, 7, 7, 9, 6, 0, 7, 1, 2, 3, 4, 9, 2, 0, 6, 1, 0, 7, 1, 1, 5, 2, 2, 0, 6, 3, 9, 0, 0, 7, 3, 5
OFFSET
0,1
COMMENTS
See A190404.
LINKS
FORMULA
a(n) = floor(10^(n+1)*Sum_{j>=0} (1/2)^(2*j*(j+1)+1)) mod 10. - Danny Rorabaugh, Mar 26 2015
MAPLE
evalf(JacobiTheta2(0, 1/4)/2^(3/2)) ; # R. J. Mathar, Jul 15 2013
MATHEMATICA
(See A190404.)
(* or *) RealDigits[EllipticTheta[2, 0, 1/4]/(2*Sqrt[2]), 10, 120] // First (* Jean-François Alcover, Feb 12 2013 *)
PROG
(Sage)
def A190406(b): # Generate the constant with b bits of precision
return N(sum([(1/2)^(2*j*(j+1)+1) for j in range(0, b)]), b)
A190406(409) # Danny Rorabaugh, Mar 26 2015
(PARI) th2(x)=x^.25 + 2*suminf(n=1, x^(n+1/2)^2)
th2(1/4)/sqrt(8) \\ Charles R Greathouse IV, Jun 06 2016
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Clark Kimberling, May 10 2011
STATUS
approved