login
A190326
n + [n*s/r] + [n*t/r]; r=1/2, s=sinh(Pi/2), t=cosh(Pi/2).
4
10, 21, 31, 42, 53, 63, 74, 84, 95, 106, 116, 127, 137, 148, 159, 169, 180, 190, 201, 212, 222, 233, 243, 254, 265, 275, 286, 296, 307, 318, 328, 339, 349, 360, 371, 381, 392, 402, 413, 424, 434, 445, 455, 466, 477, 487, 498, 508, 519, 530, 540, 551, 561, 572
OFFSET
1,1
COMMENTS
This is one of three sequences that partition the positive integers. In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint. Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked. Define b(n) and c(n) as the ranks of n/s and n/t. It is easy to prove that
f(n) = n + [n*s/r] + [n*t/r],
g(n) = n + [n*r/s] + [n*t/s],
h(n) = n + [n*r/t] + [n*s/t], where []=floor.
Taking r=1/2, s=sinh(Pi/2), t=cosh(Pi/2) gives
LINKS
FORMULA
A190326: f(n) = n + [2*n*sinh(Pi/2)] + [2*n*cosh(Pi/2)].
A190327: g(n) = n + [n*csch(Pi/2)/2] + [n*coth(Pi/2)].
A190328: h(n) = n + [n*sech(Pi/2)/2] + [n*tanh(Pi/2)].
MATHEMATICA
r=1/2; s=Sinh[Pi/2]; t=Cosh[Pi/2];
f[n_] := n + Floor[n*s/r] + Floor[n*t/r];
g[n_] := n + Floor[n*r/s] + Floor[n*t/s];
h[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[f[n], {n, 1, 120}] (*A190326*)
Table[g[n], {n, 1, 120}] (*A190327*)
Table[h[n], {n, 1, 120}] (*A190328*)
PROG
(PARI) for(n=1, 100, print1(n + floor(2*n*sinh(Pi/2)) + floor(2*n*cosh(Pi/2)), ", ")) \\ G. C. Greubel, Apr 04 2018
(Magma) R:=RealField(); [n + Floor(2*n*Sinh(Pi(R)/2)) + Floor(2*n*Cosh(Pi(R)/2)): n in [1..100]]; // G. C. Greubel, Apr 04 2018
CROSSREFS
Sequence in context: A265415 A245071 A256825 * A185691 A042291 A041194
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 08 2011
STATUS
approved