login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190263
Continued fraction of (3 + sqrt(9 + 12*sqrt(3)))/6.
2
1, 2, 2, 3, 1, 3, 2, 1, 1, 1, 1, 8, 2, 17, 2, 3, 10, 2, 23, 1, 4, 1, 2, 1, 4, 1, 2, 35, 4, 1, 1, 1, 2, 5, 4, 1, 1, 3, 17, 3, 2, 1, 3, 1, 3, 1, 1, 10, 3, 1, 13, 1, 1, 1, 4, 1, 2, 2, 2, 1, 2, 15, 3, 2, 5, 6, 2, 1, 15, 132, 4, 2, 1, 1, 19, 1, 4, 1, 2, 5, 2, 16, 2, 1, 15, 5, 2, 10, 13, 1, 1
OFFSET
1,2
COMMENTS
Equivalent to the periodic continued fraction [1, x, 1, x,...], where x=sqrt(3). (See A188635.)
LINKS
MATHEMATICA
r=3^(1/2)
FromContinuedFraction[{1, r, {1, r}}]
FullSimplify[%]
ContinuedFraction[%, 100] (* A190263 *)
RealDigits[N[%%, 120]] (* A190262 *)
N[%%%, 40]
ContinuedFraction[(3 + Sqrt[9 + 12*Sqrt[3]])/6, 100] (* G. C. Greubel, Dec 26 2017 *)
PROG
(PARI) contfrac((3+sqrt(9+sqrt(432)))/6) \\ Charles R Greathouse IV, Jul 29 2011
(Magma) ContinuedFraction((3 + sqrt(9 + 12*sqrt(3)))/6); // G. C. Greubel, Dec 28 2017
CROSSREFS
Sequence in context: A083040 A083899 A339461 * A144911 A233431 A160650
KEYWORD
nonn,cofr
AUTHOR
Clark Kimberling, May 06 2011
STATUS
approved