login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190219
Numbers all of whose divisors have decimal digits in strictly decreasing order.
5
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 21, 31, 40, 41, 43, 53, 61, 62, 63, 71, 73, 82, 83, 86, 93, 97, 421, 431, 521, 541, 631, 641, 643, 653, 743, 751, 761, 821, 842, 853, 862, 863, 941, 953, 961, 971, 983, 5431, 6421, 6521, 7321, 7541, 7621, 7643, 8431, 8521
OFFSET
1,2
COMMENTS
Sequence is finite. Last term a(104) = 98765431.
Subset of A009995 and A190220. Superset of A052014.
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 1..104 (full sequence)
EXAMPLE
Number 93 is in sequence because all divisors of 93 (1, 3, 31, 93) are numbers whose decimal digits are in strictly decreasing order.
MAPLE
with(numtheory): A190219 := proc(n) option remember: local d, dd, i, j, k, m, poten: if(n=1)then return 1: fi: for k from procname(n-1)+1 do d:=divisors(k): poten:=1: for i from 1 to nops(d) do m:=-1: dd:=convert(d[i], base, 10): for j from 1 to nops(dd) do if(m<dd[j])then m:=dd[j]: else poten:=0: break: fi: od: if(poten=0)then break:fi: od: if(poten=1)then return k: fi: od: end: seq(A190219(n), n=1..60); # Nathaniel Johnston, May 06 2011
MATHEMATICA
Select[Range[9000], Max[Flatten[Differences/@(IntegerDigits/@Divisors[#])]]<0&] (* Harvey P. Dale, Feb 22 2024 *)
CROSSREFS
Sequence in context: A032889 A308393 A009995 * A038367 A214958 A161350
KEYWORD
nonn,fini,full,base
AUTHOR
Jaroslav Krizek, May 06 2011
STATUS
approved