login
A190130
Numbers 1 through 10000 sorted lexicographically in octal representation (base 8).
7
1, 8, 64, 512, 4096, 4097, 4098, 4099, 4100, 4101, 4102, 4103, 513, 4104, 4105, 4106, 4107, 4108, 4109, 4110, 4111, 514, 4112, 4113, 4114, 4115, 4116, 4117, 4118, 4119, 515, 4120, 4121, 4122, 4123, 4124, 4125, 4126, 4127, 516, 4128, 4129, 4130, 4131, 4132
OFFSET
1,2
COMMENTS
A190131 = inverse permutation: a(A190131(n)) = A190131(a(n)) = n;
a(n) <> n for n > 1.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (full sequence)
Eric Weisstein's World of Mathematics, Lexicographic Order
Eric Weisstein's World of Mathematics, Octal
Wikipedia, Octal
EXAMPLE
a(10) = 4101 -> 10005 [oct];
a(11) = 4102 -> 10006 [oct];
a(12) = 4103 -> 10007 [oct];
a(13) = 513 -> 1001 [oct];
a(14) = 4104 -> 10010 [oct];
a(15) = 4105 -> 10011 [oct];
a(16) = 4106 -> 10012 [oct];
largest term a(67151) = 10000 -> 23420 [oct];
last term a(10000) = 4095 -> 7777 [oct], largest term lexicographically.
PROG
(Haskell)
import Data.Ord (comparing)
import Data.List (sortBy)
a190130 n = a190130_list !! (n-1)
a190130_list = sortBy (comparing (show . a007094)) [1..10000]
CROSSREFS
A007094; A190126 (base 2), A190128 (base 3), A190016 (base 10), A190132 (base 12), A190134 (base 16).
Sequence in context: A269775 A269655 A250360 * A125908 A206454 A001018
KEYWORD
nonn,base,fini,full
AUTHOR
Reinhard Zumkeller, May 06 2011
STATUS
approved