login
A190126
Numbers 1 through 10000 sorted lexicographically in binary representation.
7
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 8193, 4097, 8194, 8195, 2049, 4098, 8196, 8197, 4099, 8198, 8199, 1025, 2050, 4100, 8200, 8201, 4101, 8202, 8203, 2051, 4102, 8204, 8205, 4103, 8206, 8207, 513, 1026, 2052, 4104, 8208, 8209, 4105
OFFSET
1,2
COMMENTS
A190127 = inverse permutation: a(A190127(n)) = A190127(a(n)) = n;
a(n) <> n for n > 2.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (full sequence)
Eric Weisstein's World of Mathematics, Lexicographic Order.
EXAMPLE
a(13) = 4096 -> 1000000000000 [bin];
a(14) = 8192 -> 10000000000000 [bin];
a(15) = 8193 -> 10000000000001 [bin];
a(16) = 4097 -> 1000000000001 [bin];
a(17) = 8194 -> 10000000000010 [bin];
a(18) = 8195 -> 10000000000011 [bin];
a(19) = 2049 -> 100000000001 [bin];
a(20) = 4098 -> 1000000000010 [bin];
largest term a(3626) = 10000 -> 10011100010000 [bin];
last term a(10000) = 8191 -> 1111111111111 [bin], largest term lexicographically.
PROG
(Haskell)
import Data.Ord (comparing)
import Data.List (sortBy)
a190126 n = a190126_list !! (n-1)
a190126_list = sortBy (comparing (show . a007088)) [1..10000]
CROSSREFS
Cf. A007088; A190128 (base 3), A190130 (base 8), A190016 (base 10), A190132 (base 12), A190134 (base 16).
Sequence in context: A168084 A133025 A216095 * A219676 A220469 A370254
KEYWORD
nonn,base,fini,full
AUTHOR
Reinhard Zumkeller, May 06 2011
STATUS
approved