OFFSET
1,1
COMMENTS
Let R denote a rectangle whose shape (i.e., length/width) is (1 + x + sqrt(14+10*x))/4, where x=sqrt(5). This rectangle can be partitioned into golden rectangles and squares in a manner that matches the periodic continued fraction [r,1,r,1,r,1,r,1,...]. It can also be partitioned into squares so as to match the nonperiodic continued fraction [2,3,6,3,...] at A189971. For details, see A188635.
Decimal expansion of sqrt(r + r*sqrt(r + r*sqrt(r + ...))), where r = (1 + sqrt(5))/2 = golden ratio. - Ilya Gutkovskiy, Aug 24 2015
A quartic integer. - Charles R Greathouse IV, Aug 29 2015
LINKS
EXAMPLE
2.31651242917313233045161321161782337624579...
MATHEMATICA
r = (1 + 5^(1/2))/2;
FromContinuedFraction[{r, 1, {r, 1}}]
FullSimplify[%]
ContinuedFraction[%, 100] (* A189971 *)
RealDigits[N[%%, 120]] (* A189970 *)
N[%%%, 40]
RealDigits[(1+Sqrt[5]+Sqrt[14+10Sqrt[5]])/4, 10, 120][[1]] (* Harvey P. Dale, Sep 24 2015 *)
PROG
(PARI) default(realprecision, 1000); x=sqrt(5); (1+x+sqrt(14+10*x))/4 \\ Anders Hellström, Aug 24 2015
(PARI) polrootsreal(x^4-x^3-2*x^2-2*x-1)[2] \\ Charles R Greathouse IV, Aug 29 2015
(Magma) (1 + Sqrt(5) + Sqrt(14 + 10*Sqrt(5)) )/4; // G. C. Greubel, Jan 12 2018
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, May 05 2011
STATUS
approved